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Overview

Current D062 safety levels computations utilize the Laplace

Distribution to approximate the distribution of demandin a lead

time. This paper presents several plots which compare the Laplace

distribution with an empirical model of D062 demand in a lead

time. Section I provides additional background for the paper,

while Section II presents a detailed comparison of several spe-

cific lead time demand models.

Background

Safety level computations utilized in the Economic Order

Quantity (EOQ) Buy Computation System (D062) are based on formu-

las originally developed by Presutti and Trepp (1970). These

authors consider the problem of determining order quantities

and reorder points for each item in a single-echelon, multi-item,

continuous review inventory system so as to minimize total system

holding and shortage costs. In addition, they assume there is

a constraint on either total units back ordered or on the average

number of units in a back order position. Presutti and Trepp

+ -..



.5 Ayb*,OMl ; r4g that demand in a lead time is normally distrib-

uted. Howeve;I they then utilize the Laplace distribution to

A. also* are normal. With this subsitution, Presutti and

T odW .Wn clqsod form expressions for the optimum order quantity

and roorder point. For convenience, we refer to these resulting

formulas as theoPT-Formulas.

Subsequent simulation studies using actual demand history

for Air Force items showed the PT-formulas were significantly

more cost effective than the inventory level computations then

in use; that is, the PT-formulas provided lower levels of back-

orders for a given investment in inventory than the previous

formulas, or conversely, a given back order level could be achieved

with the PT-formulas with a smaller investment in safety stocks.

As a result of these studies, the Air Force, the Defense Supply

Agency, and the US Army (for high demand items) adopted the PT-

formulas for the management of EOQ-type items.

Three of the major assumptions which are embedded in the

Air Force D062 implementation of the PT-formulas are the following:

1. Demand in a lead time is normally distributed.

2. The lead time is known and constant.

3. The mean and standard deviation of lead time demand

may be accurately estimated from available history.
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The above assumptions are coionly employed in many conercial

inventory systems, and, as noted above, simulation studies have

shown the resulting formulas are significantly more cost effec-

tive for the control of Air Force BOQ inventories than the pe-

viously used formulas. However, several recent studies have

indicated that the above assumptions may be a poor approximation

*to the actual characterics of many Air Force BOQ items. In partic-

ular, in Reference 2 it is observed that the distribution of

forecast errors appears better described by a nonsymnetrical

exponential distribution than by the normal distribution. In

Reference 4, Hayya observes that the replenishment lead time

for many D062 items appears to be highly variable, and that the

limited amount of data on procurement lead times makes accurate

estimations of lead time parameters difficult.

As a result of these findings, we have used historical D062

data to develop a refined model for the distribution of demand

in a lead time. In this paper, we provide comparisons of this

empirically derived model with the Laplace distribution. First,

however, let us consider each of these formulas in more detail.

The Laplace Distribution

Let

x = number of units observed during a procurement lead time
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u * the expected demand in a lead time.

a the standard deviation of demand in a lead time.

t a the lead time in months.

With the above definitions, the probability density function

f(x) for the Laplace distribution is given by

(1) f(x)= 1 exp( -JIki)

where

(2) k = (x-u) I

i.e. k denotes the number of standard deviations that the demand

value x exceeds the expected demand in a lead time. Given (1),

- Presutti and Trepp show that the probability that the demands

actually observed in a procurement lead time (X) is less thanI* or equal to a specific numerical value x is given by

.S exp C WT k ) for k 1 0

(3) P(X 'x)

1. - .5 exp C - , k ) for k 0

* *, *** * .



In establishing cost effective safety stocks, the cumulative

distribution function P(X d x ) is particularly important. A

common approach for establishing safety stocks is to consider

the trade-off between holding costs and shortages to determine

an optimum fill probability PF. The cumulative distribution

function P(X & z) is then used to determine the specific value

of x that corresponds to this optimum fill probability.

As noted above, an important assumption embedded in the D062

safety level computation is that the parameters u and a of the

lead time distribution may be accurately estimated from available

data. Since demand in a lead time is not directly observed in

the D062 system, these parameters must be estimated from other

data. At present, the following estimation equations are used.

First, let R denote the average quarterly demand rate observed

over the past eight quarters, and let QMAD denote the Mean Abso-

lute Deviation (MAD) associated with this quarterly demand rate

estimate. Then the parameters u, 6 of the lead time demand distri-

bution are estimated as follows:

U R*t

(4)

8 -0.5945 * Q AD* C 0.8235 0.42625 * t)

* Where "*" denotes multiplication. The first equation is derived

from the fact that the expected demand in a lead time of t periods

I -4
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is equal to t times the expected demands in a single period.

The standard deviation estimate 8 is based on an approximation
suggested by Brown (1967). This approximation accounts for

the fact that demand rate estimates are based upon averages of

random variables and are thus correlated from period to period.

An Bapirical Model of Forecast Errors in a Given Time

Reference 2 presents the results of statistical studies to

identify the actual distribution of forecasting errors associated

with current D067 forecasting methods. In this reference, actual

CY71-79 D062 demand histories for Sacramento and Oklahoma City

Air Logistics Centers are used to (a) forecast demands in a given

lead time using current D062 forecast rules, and (b) to compute

the distribution of forecast errors associated with these fore-

casts. Analytical approximations to the empirical data are then

developed. As a result, it was found that for items with demand

rates of three units per quarter or more, tle cumulative distri-

bution function for demand in a fixed lead time of t periods

may be approximated by

0.669 exp ( 0.7979 z) for z '.0

(S) P(x • x t)-

.. - 0.331 exp C - 0.463 z) for z 6 0

where
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(6) z x - R t )/ (Wa )

This model appears to be a particularly good fit to the actual

distribution of forecast errors for positive values of z.

A Epirical Model with Gamma Lead Times

Equation (5) describes a useful model for the distribution

of demand in a fixed lead time of t periods. If lead time is

* random and independent of demands per period, the unconditional

distribution of demand in a lead time may be found by averaging

the conditional distribution (5) with the probability distribu-

tion for lead time. Specifically, let g(t) denote the probabil-

ity density function of lead time. Then it may be shown that

unconditional distribution of demand in a lead time is given

by

~00

(7) P(X x) P(X xlt ) g(t) dtf0
In Reference 4, Hayya describes statistical studies to iden-

tify an appropriate model for the distribution of lead times

for D062 items. He observes that several probability distribu-

tions, including the normal, gamma, exponential, Weibull and

log normal, are consistent with the available lead time data

! !for a number of D062 items. In reviewing Hayya's results, the



Gamma distribution, in particular, appears to be a useful descrip-

tion of lead time for the purposes of this study. Specifically,

if lead times are gamma distrib,ited, we have

~a-l(8) g(t) 1 t exp (-t/ b)

'(a) ba

where a and b are parameters of the distribution. The expected

value and variance of the Gamma distribution are given by

(9) E(t) - a b

(10) Var(t) - a b2 = b E(t)

Hence, one method of establishing the parameters for a Gamma

distribution is to estimate the mean and variance of lead time

from historical data, and then use (9) to solve for the specific

(a,b) values which yield the desired moments.

A second estimation procedure is based upon the fact that

the coefficient of variation c for the Gamma distribution is

given by

* i
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E(t) ab -a

Hence

(12) a- 1

c
2

Once .a is known, parameter b may be obtained using (9). Specifically,

(13) b - E(t)/a

Thus, to obtain (a,b) estimates we may estimate the coefficient

of variation c and the expected lead time Et), and then use

these values in (12) and (13) to obtain (a,b) estimates. In

the calculations reported in Section I, we have used this second

approach.

Estimates for a Specific Lead Time Distribution

In Reference 4, Appendix C, Hayya presents estimates of the

mean and coefficient of variation associated with historical

lead time data for 62 EOQ items. Table I-1 presents a summary

of the coefficients of variation observed by Hayya. Observe

that these values range from .05 to 1.07, with a median value

of .36. If we set c a .36, then (12) yields the estimate a =

7.7. However, evaluation of (8) is significantly simplified

if a is integer, for then the Gamma function Y(a) - (a-l)!

___ __ ___ _,___ __ ___ __ ___ __ '
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For aw7, c=l u , -.378, while a-S gives colI / * .3S23. Hence,

a Gamma distribution with a-8 has a coefficient of variation

similar to the median c value observed by Hayya. Now suppose

we normalize our time scale so that EMt w 1. Hence, using a

8 in (13) yields b a 1/8 -.12S. Finally, substituting these

values in (8), we obtain

(14) g(t) 1 exp( -St)

T(S) (1/8) 8

- ~8 (8t) 7 exp( -8t)

71

which yields

(15) g(t) * .0015873 (St) 7 exp( -St)

We have used this equation for the distribution of lead times

in the computer code presented in the Appendix. Finally, suppose

we wish to estimate the unconditional distribution of demand

in a lead time using the P( X • x I t) distribution defined by

(S), (6) and the lead time distribution (15). From (7),

(.x/R
(16) P( x ' x ) . f[0.669 exp ( .7979 z )]g(t) dt

SjCE 1. - 0.331 exp( 0.463 z YJg(t) dt

x/R

where z ( (x-Rt)/(QMAD t ).

A N
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We have used numeric integration to evaluate (16) using a

J stop size of dt -. 1. Our computer code is presented in the

Appendix. Subroutine EXPLTD (X,R, QMAD, QTRLT, CUJ4PX) computes

the cumulative probability CU?4PX = P( X & x) for given values

of X, R9 QMAD, and QTRLT, where QTRLT denotes the expected lead

time in months, and the other terms are as defined above. The

MAIN program presented in the Appendix uses subroutine EXPLTD to

compute the unconditional distribution of P( X 6 x) for selected

values of x and to compute and print associated Laplace distri-

bution values. In the next section, we present the results of

these calculations.

*1



Section II

Sensitivity Analysis

To compare the cumulative distribution functions (CDF) asso-

ciated with the Laplace and the empirically-derived model of

demand in a leadtime, we developed the computer code shown in

Appendix A. We then used this code to evaluate these distribu-

tions for a number of parameter sets. Table 11-1 illustrates

our results for a hypothical item with a demand rate R=300 units

per quarter, a demand coefficient of variation of .2, and an

average leadtime of 9 months. In the table, X denotes the speci-

fic number of units of demand in a given lead time, while the

column labeled "EXPGAM" shows the CDF of the empirically derived

exponential-gamma model. That is, this column presents the cumu-

lative distribution function for demand in a lead time using

the exponential model for forecast errors in given lead time

and also assuming that lead times are independent of demand and

gamma distributed a coefficient of variation of .353. For exam-

ple, comparing these two columns, we see that there is an 80%

chance that demand in a relenishment leadtime will be less than

or equal to 1330 units, and a 90.9% chance that demand in the

leadtime will be less than or equal to 1900 units.

The columns labeled "CONL' and "LAPLACE" represent alternate

cumulative distribution functions. The column labeled "CONLT"

Jt
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Table I-1

Cumulative Probabilities

for

Three Distributions of LeadTime Demand

R• 300.00 CU 0.20 LFA TIIRE NTK 9.00

X E CLT LAKM EMLT EXFG-L4PL

0. 0.0004 0.000! 0.0000 0. 0.0003
,15.0 0.0019 0.0004 0.0001 0.1271 0.0017
230.0 0.0093 0.0011 0.0004 0.2556 0.0089
345.0 0.0259 .003 0.0014 0.333 0.0345
460.0 0.0972 0.009W 0. 0.5111 0.0926
575.0 0.1930 0.0296 0.0158 0.6399 0.1772
690.0 0.3195 0.0N92 0.0536 0.7667 0. ?MO
3W.0 0.4593 0.263 0.1820 0.9NU 0.2772
M.0 A. "6o .7039 0.93 1.0222 -0.0092

1035.0 0.692 0.8439 0.8,10 t.150 -0.1849
1150.0 AY,962 ...9177 0.*50 1.2772 -0.1789
I26.0 0.9549 0.96 0.90.7 i.,056 -0.1349
1390. 0 0.9020 0.977i 0.9970 1,5333 -0.0950
1493.0 0.3934 0,990 .. 9991 1.6611 -0.0637
1610.0 0.95 .0.917 0. 9.97 1.769 -0.0414
1,23.n O.9" I3 ", . 41. 1.967 -0.02%
!Pan.^A . t7 P.32 y_~5z e.ft:7!
I9..0 0 -!91 .99! 1.000o 2.1722 -0.0i09
2070.0 4.9921 0.9S75 l.t0 !300Af -A.A06

Where X - demand in the leadtime (units)
EXPGAN a Exponential-Gamma Model
CONLT - Exponential-Constant Model
LAPLACE Laplace Model
EDILT - Standardized lead time demand

(Observed lead time demand X)

(Expected demand rate) (Expected Leadtime)

L ._ _____ ____.....____ __._ ____
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is the cumulative distribution function Zor demand in a fixed

lead time (i.e., there is no variability in replenishment lead-

tine), using the exponential approximation to the distribution

of forecast errors. On the other hand, the "Laplace" column

represents the corresponding cumulative probabilities predicted

by the LAPLACE distribution . The column labeled "EDELP' is

a normalized measure for demand in a leadtime. This column is

obtained by dividing the number of units X demanded in a leadtime

by the expected number of units demanded in the expected lead-

time. In this case, since the demand rate is 300 units per quar-

ter and the leadtime is 9 months, the expected demand in the

expected leadtime is 900 units. Consequently, the "EDELT" column

was obtained by dividing X by 900. Finally, the column labeled

"EXPG-LAPL" presents the difference'between the culmulative dis-

tribution functions for the EXPGAM and LAPLACE models.

Figure 11-1 presents a plot of the cumulative distribution

functions in Table 11-1. In the figure, the solid line repre-

sents the Laplace cumulative distribution function, while the

*dashed lines present the constant leadtime and exponential-gamma

models, respectively. The normalized leadtime demand value EDELT

is used for the X-axis in this plot. As shown in the figure,

there are significant differences between the Laplace and Expo-

nential-Gamma models. For example, if one wishes to achieve

a 90 percent fill rate, the BXPGAM model indicates that the safety

stock should be set to 1.53 times EDELT, the expected demand

in the expected leadtime, or 1380 units. On the other hand,

t~
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the Laplace model indicates that the 90% fill rate may be achieved

with a safety stock of about 1.2 times EDELT, or 1080 units.

On the other hand, the two curves cross at approximately the

EDELT=1 value, and the cumulative distribution functions of all

three functions are very similar in this region.

Figure 11-2 presents a plot of the three distributions for

a case in which demand per quarter is 300 units and leadtime

is 9 months, but the coefficient of variation of demand per quar-

ter has been increased to .5. Notice that the three curves are

closer in this case, but that there are still substantial differ-

ences among the curves. Figure 11-3 presents a similar plot

when the coefficient of variation of demand per quarter is .8.

The curves are now even more similar than for the .5 case, but

significant differences among the curves still exist, particu-

larly in the 801 and above fill rate region.

To obtain further insights into the relative behavior of

these three curves, we ploted a number of other combinations

of parameters. In our first sensitivity study, we were inter-

ested in the effects of changes in item demand rate and demand

variability upon the overall shapes of the curves. Our results

are presented in Figures 11-1 through 11-12, while the specific

parameter sets investigated are shown in Table 11-2. As shown

in the Table, we developed curves for demand rates of 300, 30,

3, and .3 units per quarter, respectivily, and for coefficients

of variation of demand per quarter of .2, .5, and .8. In all
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Table 11-2

Parameter Sets for Demand Rate and Demand Variability Sensitivity Tests

Coefficient of Average
Demand Variation of Replenishment

Figure per Qtr Demand per Qtr Leadtiae (Months)

11I-1 300 .2 9
11-2 5 9
11-3 .8 9

* 11-4 30 .2 9II-S of "II-5 ".•5 9
11-6 8 9

11-7 3 .2 9
11-S .5 9
11-9 " .8 9

11-10 .3 .2 9
11-11 t.S 9

* 11-12 " .8 9

__ _ _ _ _ _

4 -.-
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of these cases, we assumed that replenishment leadtime was gamma

distributed with a coefficient of variation of .353 and an aver-

age leadtime value of 9 months.

As may be seen in Figures 11-4 through 11-12, as the coef-

ficient of variation of demand per quarter increases, differences

among the three leadtime demand curves diminish. The greatest

differences among the curves occur at low values of the coeffi-

cient variation, and the differences decrease as the coefficient

of variation increases. However, even for :oefficient of varia-

tion values of .8, significant differences among the curves exist

for fill rates in the 80% or higher range.

Sensitivity to Average Replenishment Leadtime

We also developed a number of plots to investigate the sensi-

tivity of the three leadtime demand curves to changes in the

* average replenishment leadtime. Table 11-3 summarizes the para-

meters sets used while Figures 11-13 through 11-24 present our

results. In this case, we investigated average replenishment

leadtimes of 6, 9, and 12 months, while demand per quarter was

set to 300, 30, 3 and .3 units per quarter, repectively. In

all of these calculations, the coefficient of variation of demand

per quarter was sent to .5 while the coefficent of variation

of replenishment leadtime was set to .353.



Table 11-3

Parameter Sets for Replenishment Leadtime Sensitivity Tests

Coefficient of Average
Demand Variation of -Replenishment

Figure per Qtr Demand per Qtr Leadtime (Months)

11-13 300 .5 6
11-14 1 of 9

* 1-15 of to 12

11-16 30 .5 6
11-17 it of 9
11-18 I,12

11-19 3 .5 6
11-20 " ,9

11-21 12
11-22 .
11-23 " 9
11-24 12

Figures 11-13 through 11-24 present relationships among the

curves which are very similar to those observed In Figures 11-

1 thru 11-12. As the leadtime increases, slight changes in the

curves take place, but these are hard to observe in the graphs.

In all cases, significant differences exist among the curves

in the 80+1 fill rate ranges.

IkK
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Appendix A

Programs for Laplace

and

hapirical Approximation Calculations



10*EXPLTD.9--COHPUTE P(Xv< x) FOR EXP. APPROX. AND SANA LEADTINE
20C
34C ASSUHE I PERIOD a EXPECTED LEADTIIIE
40C LEADJIME HAS NEAN a 1
541C COEFFICIENT OF VARIATION = .353
"1C
7#c k a EVIECTED DENAND IN LEAD'IlliE
see SI16 STANDARD DEVIATION OF DEMAND IN EXPECTED LEADTIIE
911 RHAD uHAD OF DEMAND IN EXPECTED LEADTINE
I 001C
Hloc CUUPTaCUN. PROD OF LEADTIME DISTRIBL1118N
120C CIJHPXw CUM. PROD OF PENAND 1 10 LEADTINE
I 30C
140C DT a TINE DELTA
Tsoc 6T a P (LEADTINE a T)
160C ZT v STANDARDIZED ERROR
170c
It0 CONNON/IUT/I#T(20)
1 9OC
200C SET PRINT FLAS
210OC
220 IVT(1@)aIE7L
230 IIT(11)sIPNTSZ
240 CALL FPARAN(I,132)
250C
260 PRINT,"SUTPUI TO FILE 08' (6001"
270 REA1,IOUT

290C
301C
310 PRINT,"PRII'T DETAILS T DETFAIL STEP SIZE?"
320 READ , IDETL,IPNTSZ
330 IFIIPNTSZ.LT.1) IPNTSZxIOOO
340C
342 5 COETINUE
350C SET PRINT FLAGS
360C

-. 370 I1T10'.sIEI
310 IUT(11)sIpmTsz
390 PRINMTNEAO AND COFY OF DEMAND PER OTR, AND L'T IN MONTHS"
400 READ,R,COFV, SIT
405 SOAD a 0.S*COFV*R
410 PRINT 23,RICOFV, I?
420 23 FOSMAT(//*R =uF8.2,* COFV *",FI.2,
4303 LEAD TINE NONTIS aF.d/
440C
450 IF(IDETL.6T.0)
4601 PRINT K U f cunpf LtnPxs.
4703 ZT Pz"
410C

EXPLTD



4"0C
50)t COMPUTE LEADTINE 11 SUARTEES
510C ESTINATE BAD
520C

540 OTRLTaRLT/3.
550 TOTRoITILT
555 EILI sTITR*R
556C
566C EWILATE Pt I (a x FOR 1 *0 TO MEAN 3*t1iaD
570C
510 XNAlateITELT3. *RSAI*SORT (STILT)
59C
600 DI a IMAX/IS.
610 IF(IX.L.T. 1.) IX al.
620 IF(DX.17. 1.) DX sIFIX(DX + 0.5)
630C
60C
650C INITIALIZE VARIABLES
66C

60C C11MPUTE CUNPXzP(X<xX)

710C BENZ# aXw EVALUATION LOOP
720C ------------------------------------
730 PRINT,- X EXPGAH COWL? LAPLACE EDELT*
7353 in EXPB-LAPL"
740 PRINT,*
750C
760 XuC.
770 DO 200 JXaI,100

.4790 CALL EXPLTD(X,R,RNAD,TRLT,CIiPX)
90C
Blc COMPUTE FIXED LEADTIflE PROBABILITY
82C
830 Zm(X-1*TQTR1/(RMAD$SORT(?QIR))
840 IF(Z.LE.C)CPFLT=.669*EXP(0.7979e2I
950 IF(Z.GT.0.)CPFLT=1i.-.331*EXP(-.463..1)
6C
970C COMPUTE LAPLACE PROBABILITY
Bloc
835 S66.5945.RIAI*(.1235+0.42625*RLT)
990 RKu(X-ft*TOTR)/( SIO)
900 IF(RK.LE.0.)CPLPC:.5*PEXP(t.4142*EIO

*910 IF(fK.GT.Q.)CPLPC1I..5sEXP(-1.414'*4K)
92C
930C PRINT RESULTS
94C
942 Xl a I/EOLT
945 DIFFsCUNPX-CF'LPC
950 PRINT l?3,y,CuNFPX,CP FLr,CPLPC,X#,IIFF
960 123 FORHA7(Ft2.1,5F10.4)

EXPLTD)



900 LINEOLIIE I
990 IF(IOUT.OT.O)URITE(8,l33)LINEX,CUMlPX,CPFLTCPLPC,XN
1000 133 FORNAT(1511FO.141011.4)

1020C
1030C INCREMNT X AND CHECK IF DOME
1140C
1050 IaN.DX
11060 IFIUPX.BT. 0.99) 60 TO 30

11010C

1090C ------------ENI OF "X LOOP
1100 200 CONTINUE
1111OC
1120 300 CONTINUE
1121 LINE a LINE.1
1122 IF(IIUT.67.0)UIE(,3)U,.,.00,.
1123C
1 130C
1140 URITE(6,423)
1145 423 FSRAAT(/////"CINIIMUE '(1=YES)P/)

1150 REA9,ICONT
1160 IF(ICONT.NE. 11 STOP
1170 so TO 5
1110 END
1190 SUIRIUITINE EXPLID(X,R,OflAD,GTRLT,CUMPI)
1200C
1210 CONfON/IUT/IUT?20)
1226C
1230C SET URITE FLAS
1240C
1250 IDETL *IUT(10)
1260 IPNTST JIT(11)
1270 CUNPI.
128, CUIPI=:f.
1 291C
1301C INITIALIZE PDF PARAMIETERS
1310c
1326 Aix 9.331
1330 11 -0.463
1340C
1350 62z 0.669

*1361 12a *.7979
1370C
IssOC 6AARA CSNSIAOr FORC fEA#:21 AND C=3.
1390 Cie 0.0015873
1400C
1410C

EXPLTh

__ __q



1420C ---------------------------------------

1430C
1440C
1450C INITIALIZE FOR I INTEGRATION
1460C
1470 DT a .1
1410 1 a 31
1490 CUWPTm#.
1500 CIIPISO.
15109

1520C IESIN 01" INTEGRATION LOOP
1530C
1540 30 100 -1,i100
1550C

1560C CONPUTE STINDARDIZED ERR8R ZT
1570C
150 TOTR= TeOIRLT
1590 ZT a (I - R*TGTR)I (GIA1*S1GtTOIR))
1600C
1610C COMPUTE p( T)
1620C
1630 ST a CI*(I.)3*s7e EIP(-$.*T) * 1T
1640C
1650C COMPUTE P(Z (w ZT : TI
1660C

1670 IF( ZT.LE.O.) PZ aA2*EXPI92*ZT)
1600 IF( ZT.GT.O.) PZ- I. - AIOEXP 91*ZT)
1690C
1700C COMPUTE P( I <a ! T P(1)
1710C
1720 PIT - PZoGT
1730C
1740C UPDATE CUNULATIVE PROBABILITIES
1750C
1760 CUIPI a CUP f O GT
1770 CUMPX = CUIPI f PXT
1780C
1790 IPINT-i
1900 IF(IOD(I,IPiTSZ).[.0) IPRNT,1
1810 IF(IDETL.LE.O) IPRVTxO
1820 IF(IPRNT.0T.O) URITE(6,63) X,1,GI,PXT,CU9PT,CUMPX,ZT,PZ
1130 63 FORNAT(2FO.2,6FI0.4)
1040C
1850C
1860C INCREMENT T
1870C
190 T * T+IT
1990C
1904C STOP IF CUNPT > .999
1910C
1920 IF(CUMP'T.61. 0.9) 00 TO 1;0
1930C
1940C ------------- END OF "I" iOOP -------
1950 100 CONTINUE
1960C
1970 120 CONTILUE
1980 RETUIRO E'PLTD
1990 E SO

IRV,


